

Producing Chirped Electron Beams in the APS

Michael Borland Operations Analysis Group **APS Operations Division** May 6, 2005

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Outline

- Review of Zholents' concept
- Basic analysis of compression
- Lattice options
- Lifetime issues
- Emittance degradation mechanisms
- Error sensitivities
- Photon beam properties
- Optimization of compression

Zholents' Transverse Rf Chirp Concept

(Adapted from A. Zholents' August 30, 2004 presentation at APS Strategic Planning Meeting.)

Compression Analysis

• Assuming everything is linear and gaussian, the minimum achievable pulse length for a long beamline is

Normal APS bunch is 40 ps rms

Lattice Options

1 sector spacing

2 ID + 1 BM

2 sector spacing

4 ID + 2 BM

Beta function increase required to get the right phase advance

Helps compression by making divergence smaller

After V. Sajaev

Lifetime Issues

- The maximum angular deflection seen by any particle is V/E
- We can preserve lifetime by requiring

$$\frac{\mathrm{DV}}{\mathrm{E}} + 10\,\sigma_{\mathrm{y,slice}} \leq \mathrm{A}$$

- With A= ± 4 mm aperture and D=3.7m cavity-to-aperture distance, V<7.2 MV gives 10σ aperture
- We need hV=48MV to get 0.4 ps rms
- Must get large hV via h instead of V
 - h=8 is practical limit for power sources²
 - 6 MV may be possible for super-conducting system¹

¹G. Waldschmidt ²D. Horan

Rf Curvature and Frequency Choice

Can get the same compression as long as h*V is constant

Higher V and lower h: more linear chirp and less need for slits

Higher h and lower V: smaller maximum deflection and less lifetime impact

Higher h and maximum V: shortest pulse, acceptable lifetime

Causes of Emittance Degradation

- Less than total kick cancellation will cause emittance increase
- Effects present in a perfect machine
 - Momentum compaction and beam energy spread
 - Sextupole nonlinearity
 - Chromaticity and beam energy spread
- Additional effects in an imperfect machine
 - Lattice errors
 - Lattice coupling between cavities
 - Roll of cavities about beam axis
 - Rf phasing and voltage errors

Sextupole Effects

- Sextupoles are necessary
 - Correct chromatic focusing aberrations
 - Defeat beam instabilities
- Sextupoles have undesirable side-effects
 - Phase advance varies with amplitude
 - Kick cancellation varies with amplitude
 - Vertical emittance increases
 - Horizontal and vertical motion gets coupled

- Leads to large horizontal emittance growth
- Plausible solution: turn off sextupoles between cavities

$$B_y = \frac{1}{2}m(x^2 - y^2)$$
$$B_x = mxy$$

Interior Sextupoles and Horizontal Emittance

Radiation damping helps sextupole-on case

Interior Sextupoles and Vertical Emittance

Damping helps sextupoles-on case and QE hurts sextupoles-off case

Are we limited to 2 MV?

Optimizing Sextupoles

- Can directly minimize vertical and horizontal emittance¹
 - Allow **elegant** to vary the interior sextupoles
 - APS has individual supplies for each sextupole
- Important factors in making this work²
 - Use lattice with lower vertical beta functions
 - Zero chromaticity between cavities
 - Don't let sextupoles change too much
- If these are not respected, the dynamic aperture is tiny
- Sajaev's solution is used in all subsequent simulations

¹M. Borland

²V. Sajaev

Optimized Sextupoles

 Opens possibility to increase the number of sectors that could benefit from the compression scheme

Number of sectors	Vertical emittance
2	70 pm
3	59 pm
4	41 pm

- Number of sectors limited by dynamic aperture reduction
- Can also make the starting vertical emittance smaller (as small as 8 pm) instead of starting with nominal 25 pm

Content courtesy V. Sajaev, APS.

Error Sensitivities

- So far, all calculations assumed a perfect machine
- Sensitivities have been estimated for several types of *static* error
- Assumed 6 MV and h=8
- Simulations include QE effects and damping
 - In simulations, effects are turned on instantaneously and so produce a transient
 - Damping reduces emittance degradation
 - This implies that dynamic errors will have stronger effects

Lattice Errors

- Lattice errors can result in
 - Phase advance errors
 - Beta function errors
- Sources include
 - Beamline steering
 - Power supply drift
 - Misalignments
- Lattice correction gives
 - 1% beta function errors¹
 - <0.001 tune error²

¹V. Sajaev and L. Emery, EPAC 2002, p. 742 ²L. Emery

x-y Coupling

- Coupling y motion into x plane can cause problems
- May result from
 - Rolled cavities
 - Rolled quadrupole or sextupole magnets
- Simulations show that this isn't an issue for
 - Few mrad alignment of cavities
 - Typical 0.25 mrad¹ alignment of magnets

¹H. Friedsam

Intercavity Voltage Error

- Imparted errors to one of the cavities
- LCLS *pulsed* S-band system requires <0.1% rms voltage jitter¹

¹LCLS Design Study Report, SLAC R-521 (1998).

Intercavity Phase Error

SLAC *pulsed* S-band systems have <0.1 deg rms phase jitter¹

Most difficult issue is orbit disturbance outside the intercavity region.

¹R. Akre et al., SLAC PUB 9421.

Undulator Radiation Pattern

Central cone opening angle ~5 urad rms

For estimates, use

$$\sigma_{\theta} = \sqrt{\frac{\lambda}{2L}}$$

Simulations use distribution function¹

$$S(\theta) \approx sinc^2 \left(\frac{n N \pi \gamma^2 \theta^2}{1 + K^2} \right)$$

¹K.J. Kim, AIP 565 (1989)

Slicing Results for 10 keV, UA

Need for Slits with Compression

y (mm)

Without slits, rf curvature prevents complete compression

With slits, we lose intensity but get complete compression

Compression Results for 10 keV, UA¹

Compression Results for 10 keV, UA

Compression Results for 10 keV, UA

Is a Warm Pulsed System Better?

- It has been argued¹ that a pulsed system would be better
- Most pump-probe experiments use ~1kHz lasers, so continuous beam isn't useful
- Many experiments run from very short to very long time scales
 - Many experiments employ choppers with small apertures and hence cannot vary pulse length by varying slits
 - Having a chirped pulse just throws away intensity when looking at long time scales
 - Such experiments can be done more efficiently if the chirp can be turned off at will
- A pulsed chirping system lets the user do this via timing

Pulsed System Considerations

- Could charge and discharge cavities at 100~1000 Hz
 - Could start low and upgrade later
- Pulse could be of order the revolution time (3.68 μ s)
 - Power load should be manageable
 - 6 MV should be no problem
 - Emittance effects greatly reduced
- Ideally make the rf pulse last several revolution times
 - Chirp would be time-modulated, not just on/off
 - This could be an upgrade

Pulsed System Considerations

- Advantages over superconducting
 - Short development time
 - Much cheaper
- Can we maintain the required phase tolerance?
 - Need single klystron feeding both cavities
 - Need careful temperature control of
 - Cavities
 - Long waveguide runs
- Will the pulse-to-pulse chirp variation be acceptable?

Summary

- Zholents' scheme as applied to APS has been studied extensively
- Tolerances mostly manageable
 - Rf phase tolerance will be the hardest
 - Didn't simulate dynamic errors
- Need to look at stability of the delivered pulses
- Picosecond x-ray pulses appear feasible with 50~70% transmission through slits
- Case for a pulsed system is plausible